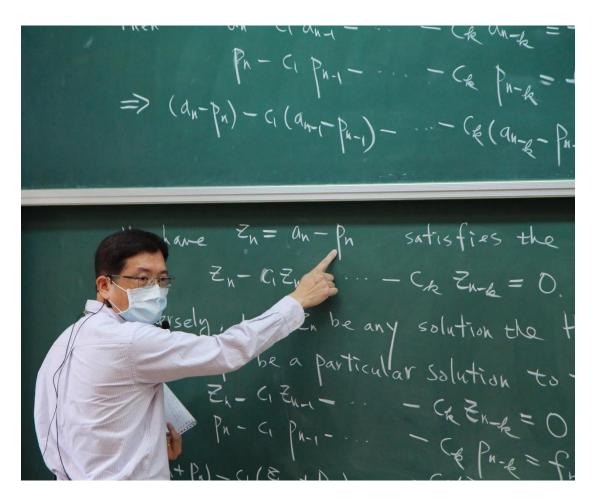
【10920 趙啟超教授離散數學/第12堂版書】



Recurrence Relations

Example

Fibonacci numbers

O, 1, 1, 2, 3, 5, 8, 13, 21, -

$$F_n = F_{n-1} + F_{n-2}$$
 for $n \ge 2$ with $F_0 = 0$, $F_1 = 1$
 $\Rightarrow F_n - F_{n-1} - F_{n-2} = 0$

$$P_{n} = F_{n-1} + F_{n-2}$$
 for $n \ge 2$ with $F_{0} = 0$, $F_{1} = 0$
 $F_{1} = F_{1} + F_{1} - F_{1} = 0$

Homogeneous Recurrence Relations

In general.

$$a_{n} - c_{1} a_{n-1} - c_{2} a_{n-2} - \cdots - c_{k} a_{n-k} = 0$$

with $a_{0} = A_{0}$, $a_{1} = A_{1}$, $a_{k-1} = A_{k-1}$

Recurrence Relations

Example Fibonacci numbers

Fn = Fn-, + Fn-, for n = 2 with Fo=0, F,=1

→ Fn-Fn-,-Fn=0

Homogeneous Recurrence Relations

In general.

general.

$$a_{n} - c_{1} a_{n-1} - c_{2} a_{n-2} - \cdots - c_{k} a_{n-k} = 0$$

with $a_{0} = A_{0}$, $a_{1} = A_{1}$, ..., $a_{k-1} = A_{k-1}$.

k-th order linear homogeneous recurrence relation (HRR) with constant coefficients

or k-th order linear homogeneous difference equation (HDE)

with constant coefficients

with constant coefficients

Example Solve $a_{n+1}-5a_n+6a_{n-1}=0$ for $n \ge 2$ with $a_i=1$, $a_i=5$.

Try $a_n=r^n$. $\Rightarrow r^{n+1}-5r^n+6r^{n-1}=0$ $\Rightarrow r^{n-1}(r^2-5r+6)=0$ $\Rightarrow characteristic equation$

k-th order linear homogeneous recurrence relation (HRR) with constant coefficients

or k-th order linear homogeneous difference equation (HDE)

Example Solve $a_{n+1} - 5a_n + 6a_{n-1} = 0$ for $n \ge 2$ with $a_1 = 1$, $a_2 = 5$.

Try $a_n = r^n$. $\Rightarrow r^{n+1} - 5r^n + 6r^{n-1} = 0$ $\Rightarrow r^{n-1} (r^2 - 5r + 6) = 0$ $\Rightarrow r^{n-1} (s^2 - 5r + 6) = 0$ $\Rightarrow characteristic equation$

$$\Rightarrow (Y-2)(Y-3)=0$$

$$\Rightarrow Y=2, 3.$$
Hence both $a_n=2^n$ and $a_n=3^n$ are solutions.

Since the equation is linear
$$a_n=a_12^n+a_23^n \text{ is also } a_1 \text{ solution}$$
for any constants of and a_2 .

For inttial conditions, $\begin{aligned}
& \text{The general solution.} \\
& \text{For intial conditions,} \\
& \text{The state alignment of the period o$

Please keep the so of 1.5M indoors or v

 $\Rightarrow (Y-2)(Y-3)=0$ $\Rightarrow Y=2, 3$ Hence both $a_n=2^n$ and $a_n=3^n$ are solutions.

Since the equation is linear $a_n=a_12^n+a_23^n$ is also a solution

for any constants on and a_2 . $\therefore a_n=a_12^n+a_23^n$ is the general solution.

For initial conditions, $|=a_1=2a_1+3a_2$ $5=a_2=4a_1+9a_2$ $\Rightarrow a_1=-1, a_2=1$ $\therefore a_n=-2^n+3^n, for n=1. For example, <math>a_1=-2^n+3^n=(65)$

Example Solve
$$F_n - F_{n-1} - F_{n-2} = 0$$
 for $n \ge 2$

with $F_0 = 0$, $F_1 = 1$.

characteristic eq. $Y^2 - Y - 1 = 0$
 $\Rightarrow Y = \frac{1 \pm 15}{2}$

Teneval solution = $\alpha_1 \left(\frac{1 + 15}{2} \right)^n + \alpha_2 \left(\frac{1 - 15}{2} \right)^n$

For intrial conditions:
$$0 = F_0 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$\Rightarrow \alpha_1 = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)$$

$$\Rightarrow \alpha_1 = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$\Rightarrow F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$\Rightarrow for n \ge 0$$

Example Solve
$$F_n - F_{n-1} - F_{n-2} = 0$$
 for $n \ge 2$

with $F_0 = 0$, $F_1 = 1$.

characteristic eq. $Y^2 - Y - 1 = 0$
 $\Rightarrow Y = \frac{1 \pm \sqrt{3}}{2}$

Teneval solution = $\alpha_1 \left(\frac{1 + \sqrt{3}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{3}}{2} \right)^n$

For initial conditions.

$$0 = F_0 = \alpha_1 + \alpha_2$$

$$1 = F_1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)$$

$$\Rightarrow \alpha_1 = \frac{1}{\sqrt{5}}, \quad \alpha_2 = -\frac{1}{\sqrt{5}}$$

$$\vdots \quad F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^n \quad \text{for } n \ge 0$$

$$\lim_{N\to\infty} \frac{F_{n+1}}{F_n} = \underbrace{1+\sqrt{5}}_{2}$$

$$1.618 \approx \underbrace{1+\sqrt{5}}_{2} \quad \text{golden ratio}$$

$$\underbrace{a+b}_{a+b} \quad \underbrace{a+b}_{a-b}$$

Example
$$a_{n-4}a_{n-1}+4a_{n-2}=0$$

characteristic eq. $V^2-4V+4=0$
 $\Rightarrow (V-2)^2=0$
 $\Rightarrow V=2,2$
 $\Rightarrow A_n=2^n \text{ is a solution}$

Flowever, $a_n=n2^n \text{ is also a solution}$.

$$\lim_{N \to \infty} \frac{F_{n+1}}{F_n} = \frac{1+\sqrt{5}}{2}$$

$$1.618 \approx \frac{1+\sqrt{5}}{2} \quad \text{golden vatio} \qquad \frac{a+b}{a-b} \quad \frac{a+b}{a-b}$$

Example
$$a_{n-4}a_{n-1}+4a_{n-2}=0$$

characteristic eq. $V^{2}-4V+4=0$
 $\Rightarrow (Y-2)^{2}=0$
 $\Rightarrow Y=2, 2$
 $\therefore a_{n}=2^{n} \text{ is a solution}$

Flowever, $a_{n}=n2^{n} \text{ is also a solution}$.

Since
$$a_{n}-4a_{n-1}+4a_{n-2}$$

$$= n 2^{n}-4(n-1) 2^{n-1}+4(n-2) 2^{n-2}$$

$$= 2^{n-2} \left[n \cdot 2^{2}-4(n-1) \cdot 2+4(n-2) \right]$$

$$= 2^{n-2} \left[n \left(4-8+4\right)+\left(8-8\right) \right]$$

$$= 0.$$
The general solution is $\alpha_{1} 2^{n}+\beta_{2} n 2^{n}$.

The general solution is $\alpha_1 2^n + d_2 n 2^n$.

In general, if the characteristic equation is $(r-r_0)^m$, then $\alpha_1 = r_0^n$, $\alpha_2 r_0^n$, ..., $\alpha_1^{n-1} r_0^n$ and $\alpha_1 = r_0^n$, $\alpha_1^n r_0^n$, $\alpha_2^n r_0^n$, ..., $\alpha_1^{n-1} r_0^n$ are all solutions to the HRR.

since $a_{N}-4a_{N-1}+4a_{N-2}$ $= N2^{N}-4(N-1)2^{N-1}+4(N-2)2^{N-2}$ $= 2^{N-2} \left[N\cdot 2^{2}-4(N-1)\cdot 2+4(N-2) \right]$ $= 2^{N-2} \left[N(4-8+4)+(8-8) \right]$ = 0.The general solution is $a_{1}2^{N}+a_{2}N2^{N}$.

In general, if the characteristic equation is $(Y-Y_0)^m$, then $A_n = Y_0^n$, $A_n = Y_0^n$,

Characteristic Equations with Complex Roots

Example $a_{n-2}a_{n-1}+2a_{n-2}=0$ for $n\geq 2$ with $a_0=1$, $a_1=2$.

characteristic equation $r^2-2r+2=0$ $\Rightarrow r=1\pm j$ (where j=F?)

with
$$\alpha_0 = 1$$
, $\alpha_1 = 2$.

attensive $r^2 \ge r + 2 = 0$
 $\Rightarrow r = 1 \pm j$ (where $j = r$)

The general solution is

 $\alpha_1 = \alpha_1 (\sqrt{2} e^{\frac{\pi}{2} + 1}) + d_2 (\sqrt{2} e$

Characteristic Equations with Complex Roots

Example $a_{n-2}a_{n-1} + 2a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 1$, $a_1 = 2$.

characteristic $r^2 - 2r + 2 = 0$ $\Rightarrow r = |t| = 1$ (where t = |r|)

The general solution is $A_{n} = \alpha_{1} \left(\sum_{i} e^{\frac{1}{2} \frac{\pi}{4}} \right)^{n} + A_{2} \left(\sum_{i} e^{\frac{1}{2} \frac{\pi}{4}} \right)^{n}$ $= \sum_{i} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}} + A_{2} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}}$ $= \sum_{i} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}} + A_{2} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}}$ $= \sum_{i} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}} + A_{2} \sum_{i} e^{\frac{1}{2} \frac{\pi}{4}}$

for (possibly complex) constants at and dz.

A new form of the general solution

on= Bi 2 cosnt + B2 2 sin nt

for real constants Bi and B2.

For initial conditions

$$1 = a_0 = \beta,$$

$$2 = a_1 = \sqrt{2}(\sqrt{2}\beta_1 + \sqrt{2}\beta_2) - \beta_1 + \beta_2.$$

$$\Rightarrow \beta_1 = 1, \beta_2 = 1.$$

$$\therefore a_1 = 2^{\frac{N}{2}}(\cos \frac{n\pi}{4} + \sin \frac{n\pi}{4}) \quad \text{for } n \ge 0.$$

for (possibly complex) constants at and az.

A new form of the general solution

on= Bi z² cosnt + Bz z² sin nt

for real constants Bi and Bz.

In general, if the roots of the characteristic equation are $\pi e^{\frac{1}{2}\theta}$ and $\pi e^{\frac{1}{2}\theta}$, then the general solution to the HRR can be written as $a_n = \beta_1 \pi^n \cos n\theta + \beta_2 \pi^n \sin n\theta$

Non homogeneous Recurrence Relations

an - Ci ani - Ce anize - Cre anige forcing segmence

recurrence relation (NRR) with constant coefficients

(NPE) with constant (netticients

Let an be any solution to this NRR and Pn be a particular solution.

Then $a_n - c_1 a_{n-1} - \cdots - c_k a_{n-k} = f_n$ $\Rightarrow (a_n - p_n) - c_1 (a_{n-1} - p_{n-1}) - \cdots - c_k (a_{n-k} - p_{n-k}) = f_n - f_n = 0$

Then $a_{n}-c_{1}a_{n-1}-\cdots-c_{k}a_{n-k}=f_{n}$ $\Rightarrow (a_{n}-p_{n})-c_{1}(a_{n-1}-p_{n-1})-\cdots-c_{k}(a_{n-k}-p_{n-k})=f_{n}-f_{n}=0$

We have $Z_n = Q_n - P_n$ satisfies the associated HRR $Z_n - C_1 Z_{n-1} - \cdots - C_k Z_{n-k} = 0$.

Conversely, let Z_n be any solution the HRR

and P_n be a particular solution to the NRR

then $Z_1 - C_1 Z_{n-1} - \cdots - C_k Z_{n-k} = 0$ $P_n - C_1 P_{n-1} - \cdots - C_k (Z_{n-k} + P_{n-k}) = F_n$ $\Rightarrow (Z_n + P_n) - C_1 (Z_{n-1} + P_{n-1}) - \cdots - C_k (Z_{n-k} + P_{n-k}) = F_n$

We have an = Znt Pn is a solution to the NRR.

The general solution to a given NRR is obtained by adding the general solution to the associated HRR and any particular solution to the NRR.

Example $a_n - a_{n-1} - 2a_{n-2} = 1$, $n \ge 3$ with $a_1 = 1$, $a_2 = 3$.

HRR: $a_n - a_{n-1} - 2a_{n-2} = 0$ characteristic $Y^2 - 2 = 0$ The general solution to the associated HRR is $a_1 \ge a_1 + a_2 = 0$

We have an = Zn+ prisa solution to the NRR.

The general solution to a given NRR is obtained by adding the general solution to the associated HRR and any particular solution to the NRR.

Example $a_n - a_{n-1} - 2a_{n-2} = 1$, $n \ge 3$ with $a_1 = 1$, $a_2 = 3$ HRR: $a_n - a_{n-1} - 2a_{n-2} = 0$ characteristic $t^2 - t \ge 0$ The general solution to the associated HRR is $a_1 \ge a_1 + a_2 = 0$ $a_1 \ge a_2 + a_3 = 0$

Guess a particular to the NRR:

Pn= B.

B-B-2B=1=>B=-½

The general solution to the NRR is

an= d12+d2(-1)-½.

For initial conditions,

$$1 = \alpha_1 = 2\alpha_1 - \lambda_2 - \frac{1}{2}$$
 $3 = \alpha_2 = 4\alpha_1 + \alpha_2 - \frac{1}{2}$
 $\Rightarrow \alpha_1 = \frac{5}{6}, \ \alpha_2 = \frac{1}{6}$
 $\therefore \alpha_n = \frac{5}{6} \cdot 2 + \frac{1}{6}(-1)^n - \frac{1}{2}, \ for n \ge 1$

Guess a particular to the NRR:

$$P_n = B$$
.

 $\Rightarrow B - B - 2B = 1 \Rightarrow B = -\frac{1}{2}$.

The general solution to the NRR is

 $a_n = a_1 2^n + a_2 (-1)^n - \frac{1}{2}$.

For initial conditions,
$$1 = \alpha_1 = 2\alpha_1 - \alpha_2 - \frac{1}{2}$$

$$3 = \alpha_2 = 4\alpha_1 + \alpha_2 - \frac{1}{2}$$

$$\Rightarrow \alpha_1 = \frac{5}{6}, \quad \alpha_2 = \frac{1}{6}$$

$$\therefore \quad \alpha_n = \frac{5}{6} \cdot 2 + \frac{1}{6}(-1)^n - \frac{1}{2}, \quad \text{for } n \ge 1$$